Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images
نویسندگان
چکیده
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.
منابع مشابه
Measurement of the correlation coefficients between extracted features from CT and MR images
Introduction: Nowadays applying computer in image processing is being improved revolutionary for solving medical images deficiencies. Image features that are analysis in image processing show image information. The aim of the present study was to find correlation between CT- scan and MRI images' features. Materials and Methods: After data acquisition, applying...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملMjolnir: Extending HAMMER Using a Diffusion Transformation Model and Histogram Equalization for Deformable Image Registration
Image registration is a crucial step in many medical image analysis procedures such as image fusion, surgical planning, segmentation and labeling, and shape comparison in population or longitudinal studies. A new approach to volumetric intersubject deformable image registration is presented. The method, called Mjolnir, is an extension of the highly successful method HAMMER. New image features i...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملResponse of the Pre-oriented Goal-directed Attention to Usual and Unusual Distractors: A Preliminary Study
Introduction: In this study, we investigated the distraction power of the unusual and usual images on the attention of 20 healthy primary school children. Methods: Our study was different from previous ones in that the participants were asked to fix the initial position of their attention on a pre-defined location after being presented with unusual images as distractors. The goals were prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017